Home About Us News JSM 2021 Competitions Join Us
Paper Competition Winners
JSM 2024 Student Paper Competition
The student paper competition finalists at JSM 2024 in Portland, OR
-
Winner
Maximillian Autenrieth (Imperial College London) Improved Weak Lensing Photometric Redshift Calibration via StratLearn and Hierarchical Modeling
Autenrieth, M. et al., 2024, MNRAS, arXiv e-print -
Finalists
- Samantha Berek (Toronto) The HERBAL Model: A Hierarchical Errors-in-variables Bayesian Lognormal Hurdle Model for Galactic Globular Cluster Populations
Berek, S. et al., 2023, ApJ, 955, 22 - Erin Hayes (Cambridge) GAUSSN: Bayesian time-delay estimation for strongly lensed supernovae
Hayes, E. et al., 2024, MNRAS, 530, 3942 - Aarya Patil (Toronto / Max Planck) Decoding the age-chemical structure of the Milky Way disc: an application of copulas and elicitable maps
Patil, A. et al., 2023, MNRAS, 526, 1997
- Samantha Berek (Toronto) The HERBAL Model: A Hierarchical Errors-in-variables Bayesian Lognormal Hurdle Model for Galactic Globular Cluster Populations
JSM 2023 Student Paper Competition
-
Winner
Jacob Nibauer (Princeton) Charting Galactic Accelerations with Stellar Streams and Machine Learning
Nibauer, J. et al., 2022, ApJ, 940, 1 -
Finalists
- Martijn Oei (Leiden) Measuring the giant radio galaxy length distribution with the LoTSS
Oei, M. S. S. L. et al., 2022, A&A, 672, A163 - Dayi Li (Toronto) Light from the Darkness: Detecting Ultra-diffuse Galaxies in the Perseus Cluster through Over-densities of Globular Clusters with a Log-Gaussian Cox Process
Li, D. D. et al., 2022, ApJ, 935, 3L - Sam Ward (Cambridge) Relative Intrinsic Scatter in Hierarchical Type Ia Supernova Sibling Analyses: Application to SNe 2021hpr, 1997bq, and 2008fv in NGC 3147
Ward, S. M. et al., 2023, ApJ, 956, 2
- Martijn Oei (Leiden) Measuring the giant radio galaxy length distribution with the LoTSS
JSM 2022 Student Paper Competition
The student paper competition finalists at JSM 2022 in Washington, D.C.
-
Winner
Andrew Kahlil Saydjari (Harvard) Photometry on Structured Backgrounds: Local Pixelwise Infilling by Regression
Saydjari, A. K. & Finkbeiner, D. P., 2022, ApJ, 933, 155 -
Finalists
- Aarya Anil Patil (Toronto) Functional Data Analysis for Extracting the Intrinsic Dimensionality of Spectra: Application to Chemical Homogeneity in the Open Cluster M67
Patil, A. A., Bovy, J., Eadie, G., & Jaimungal, S., 2022, ApJ, 926, 51 - Maximilian Autenrieth (ICL) Supervised Learning and Hierarchical Bayesian Modeling Under Covariate Shift in Supernova Cosmology
Autenrieth, M., van Dyk, D. A., Trotta, R., & Stenning, D. C., 2021, arXiv e-print - Jeff Shen (Toronto) The Mass of the Milky Way from the H3 Survey
Shen, J., Eadie, G. M., Murray, N., Zaritsky, D., Speagle, J. S., Ting, Y.-S., Conroy, C., Cargile, P. A., Johnson, B. D., Naidu, R. P., & Han, J. J., 2022, ApJ, 925, 1 - Stephen Thorp (Cambridge) Testing the Consistency of Dust Laws in SN Ia Host Galaxies: A BayeSN Examination of Foundation DR1
Thorp, S., Mandel, K. S., Jones, D. O., Ward, S. M., & Narayan, G., 2021, MNRAS, 508, 4310
- Aarya Anil Patil (Toronto) Functional Data Analysis for Extracting the Intrinsic Dimensionality of Spectra: Application to Chemical Homogeneity in the Open Cluster M67
We thank The Gordon & Betty Moore Foundation for financial support for the Finalists’ travel to attend and present at JSM.
JSM 2021 Student Paper Competition
-
Winner
Alex Gagliano (UIUC) GHOST: Using Only Host Galaxy Information to Accurately Associate and Distinguish Supernovae
Gagliano, A., Narayan, G., Engel, A., Carrasco Kind, M., LSST Dark Energy Science Collaboration, 2021, ApJ, 908, 170 -
Finalists
- Karthik Reddy (UMaryland) X-Ray-to-Radio Offset Inference from Low-Count X-Ray Jets
Reddy, K., Georganopoulos, M., & Meyer, E.T., 2021, ApJS, 253, 37 - Lu Li (Shanghai Obs) Modeling unresolved binaries of open clusters in the color-magnitude diagram
Li, L., Shao, Z., Li, Z.-Z., Yu, J., Zhong, J., & Chen, L., 2020, ApJ, 901, 49 - Matt Nixon (Cambridge) Assessment of Supervised Machine Learning for Atmospheric Retrieval of Exoplanets
Nixon, M.C., & Madhusudan, N., 2020, MNRAS, 496, 269 - Willow Fox-Fortino (UPenn) Reducing ground-based astrometric errors with Gaia and Gaussian processes
Fortino, W.F., et al., arXiv:2010.13742
- Karthik Reddy (UMaryland) X-Ray-to-Radio Offset Inference from Low-Count X-Ray Jets
JSM 2020 Student Paper Competition
See the Session Program for abstracts and schedule.
-
Winner
Josh Speagle (Harvard) – Photometric Biases in Modern Surveys
Portillo, S.K.N., Speagle, J.S., & Finkbeiner, D.P., 2020, AJ, 159, 165 -
Finalists
- Richard Feder-Staehle (Cal Tech) – Multiband Probabilistic Cataloging: A Joint Fitting Approach to Point Source Detection and Deblending
Feder, R.M., Portillo, S.K.N., Daylan, T., & Finkbeiner, D., 2020, AJ, 159, 163 - Matthew Ho (Carnegie Mellon) – A Robust and Efficient Deep Learning Method for Dynamical Mass Measurements of Galaxy Clusters
Ho, M., Rau, M.M., Ntampaka, M., Farahi, A., Trac, H., & Poczos, B., 2019, ApJ, 887, 25 - Oliver Philcox (Princeton) – Inferring Galactic Parameters from Chemical Abundances: A Multi-Star Approach
Philcox, O., & Rybicki, J., 2019, ApJ, 887, 9 - Collin Politsch (Carnegie Mellon) – Trend Filtering: A Modern Statistical Tool for Time-Domain Astronomy and Astronomical Spectroscopy
Politsch, C., Cisewski-Kehe, J., Croft, R.A.C., & Wasserman, L., 2020, MNRAS, 492, 4005
- Richard Feder-Staehle (Cal Tech) – Multiband Probabilistic Cataloging: A Joint Fitting Approach to Point Source Detection and Deblending
JSM 2019 Student Paper Competition
The finalists await Prof. Chad Schafer to reveal the winner of the student paper competition at JSM 2019 in Denver, CO.
See the Session Program for abstracts and more information.
-
Winner – Axel Widmark
Widmark, A., 2019, A&A, 623, A30, Measuring the local matter density using Gaia DR2 -
Finalist – Francesca Capel, KTH Royal Institute if Technology
Capel, F. & Mortlock, D.J., 2019, MNRAS, 484, 2324, Impact of using the ultrahigh-energy cosmic ray arrival energies to constrain source associations -
Finalist – Daniel Muthukrishna, University of Cambridge
Muthukrishna, D., Narayan, G., Mandel, K.S., Biswas, R., and Hlozek, R., 2019, arXiv: 1904.00014, RAPID: Early Classification of Explosive Transients using Deep Learning -
Finalist – Xixi Yu, Imperial College of Science & Technology
Yu, X., Del Zanna, G., Stenning, D.C., Cisewski-Kehe, J., Kashyap, V.L., Stein, N., van Dyk, D.A., Warren, H.P., and Weber, M.A., 2018, ApJ, 866, 146, Incorporating Uncertainties in Atomic Data into the Analysis of Solar and Stellar Observations:A Case Study in FeXIII